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Abstract

The drift motion of charged particles trapped in a magnetic field
takes place along curves of J = constant, where J is the adiabatic
integral invariant. These are closed curves in the cases usually
thought of in connection with physical systems such as the earth's
radiation belts. The present paper reports an exploration of the
possibility that there exist magnetic fields such that the curves
J = constant are avfamily of spirals. It is shown that a necessary
condition for this to occur is that there exists a J = constant spiral
surface on which B = 0, or each line of force lying in it has the
property that a particle spiralling about it does not, on the average,
drift off it, or J suffers a discontinuity as one crosses it. Whether
any of these conditions in fact leads to the curves being a family of
spirals is not discussed. It seems to the author to be unlikely that

any reasonable model of the earth's field possesses these properties.
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Introduction

We are concerned with the adiabatic description of the motion of
trapped particles begun by Alfven and developed extensively by others.
The results that we need are given by Northrup (1).
The motion of a charged particle is described as occurring in the
following coordinate system. Denote the magnetic field by‘E: Then,
since 7°B = 0, there exist functions @ and B such that B =Taox 78
Both o and B are constant along each line of force. They are independent
functions. Denote by_s path length along a line of force. Then
as Bs-2 are the configuration coordinates used to describe the motion.
The motion of a trapped particle may be thought of as composed of
three parts. The particle circles rapidly about a line of force. The
center of this circle moves with moderate speed along the line of force.
If these two motions are thought of together, one says that the particle
moves along a helix of variable pitch about a line of force. Finally,
the center of the circular motion, the so called guiding center, when
projected along the line of force on which it instantaneously lies,
slowly drifts about on some reference surface. This slow drift can be
discussed with the aid of ‘o, B, there being no occasion to consider the
value of .2 at the guiding center. Since the path of this slow drift is the
sole subject of the present work, we will speak of the motion as occurring
in the o, B space. A magnetic shell consists of a curve in this space.
The motion of a trapped particle is described by three adiabatic
invariants. These are the magnetic moment ,, the invariant J, and the

flux invariant & . The last of these is a tool for studying the effect
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on the motion of very slow time variations of the magnetic field. We
will not be concerned with it. Our object is to study the situation
in the o, B space of curves of constant J, these being the trajectories
in this space of the guiding center of a particle. If one chooses a
particular value for y, then as J runs over all possible values, a
family of curves J = constant is generated which fills the space in
the sense that exactly one member passes through each point in the
space. When we speak of a family of curves J = constant, we will
suppose that |, has the same value for all members.

The motion satisfies the equations given by Northrup (2)

(eT/c) &> = 3J/8
(eT/e) {B.» = 3/
where e and c are the charge on the particle and the speed of light.
The period of an oscillation between mirror points is T, where T is
a function of o, B, y, the particle energy, and time. The brackets
> mean that the quantity enclosed is averaged over a field line from one
mirror point to the next.

A Spiral Family

In this section we show, under certain assumptions concerning

the magnetic field, that no family of curves J = constant can be a

family of spirals. We define a family of spirals as follows. Through

each point in the o, B space passes exactly one member of the family.
There is at least one distinguished point (there may be a connected

compact set of them) called the center of the spirals. Any curve
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(not a member of the family) which begins at the center, is of
infinite length, and is nowhere tangent to any member of the family
intersects each member infinitely often. This curve will be called

the auxiliary curve. Since exactly one member of the family passes

through each point, no member intersects either itself or any other
member.

In order to clarify the meaning of the definition, it is useful
to consider the following result. Assume that the curves J = constant
are continuous, have continuous first derivatives, and are continuous
functions of their initial point. Suppose that one of them intersects
the auxiliary curve at some point while going in a particular direction
(for example, clockwise about the center), and that at its next intersection
with the auxiliary curve it is going in the opposite direction. Move
along the auxiliary curve from the first of these intersections to the
second. From the continuity assumption, it follows that at some point
there is a curve J = constant which is tangent to the auxiliary curve.
This is excluded by the definition of a family of spirals. We conclude
that all crossings of the auxiliary curve by a given curve J = constant
are in the same sense.

We now proceed to the proof. Assume that the curves J = constant
are a family of spirals. Denote by 4 the path length along an auxiliary
curve as called for by the definition. Assume that this auxiliary curve
can be so chosen that at each point on it B # O and not both of (o>
and‘(é>> vanish. This can obviously be done if, for example, the con-

ditions in question occur only at isolated points. Assume also that
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the auxiliary curve can be so chosen that T does not vanish at any
point on it, and that J is a continuous function of . These
assumptions will be examined in detail in the next section.

Consider the relation

dJ _ aJ do |, 3J dB

dsg o df B dg .
From (1) this is

%2 (eT/c) [- (B)%+ <&>9§] )
We now show that the right member cannot vanish. We have assumed that
T # 0. The quantity in square brackets can be thought of as the scalar
product of the two vectors !- <E>, \aggand de/dg, dg/dg. . - The
second of these is tangent to the auxiliary curve. From (1), the first
is normal to the curve J = constant., Since we are in a two dimensional
space, these vectors can be normal to each other only if the auxiliary
curve is tangent to the curve J = constant. This is excluded by the
definition. We have assumed that the vector {ﬁ-<B;a <é> does not vanish.
We now show that the vanishing of the vector {da/dﬂ, dR/df{ implies the
vanishing of B, which has been assumed not to occur. Let t be a vector
tangent to the auxiliary curve. Then the vanishing of d~/d{ and dB/df
implies that te9V® = t.yB = 0. If either o0 or wB8=0 , then from
B =gayB it follows that B = 0. Suppose, then, that neither gradient
vanishes. Thengy, =B, ande_all lie in one plane, and both < and 38
are perpendicular to t. Consequently, they are parallel to each other.
But then, again, B = 0. We conclude that the right member of (2) does
not vanish. From the assumed continuity of J together with the constant

sign of its derivative it follows that J is a monotonic function of Z.

As a result, the auxiliary curve intersects a given curve J = constant



-8-
at most once. The curves J = constant are not a family of spirals.
Discussion of Assumptions

The assumption that T does not vanish means that successive mirror
points do not coincide, and hence that the auxiliary curve does not
intersect a curve J = 0. A curve J=0 is a curve of constant B with
the reciprocal of the constant being equal to the value of /(% mv?)
for the particle in question. In a typical application to the radiation
belts, this curve lies closer to the earth than does the region of interest.
In order to attempt the construction of a family of spirals using such a
curve, it is obviously necessary that the curve B = % mvz/u be a spiral.

We have also assumed that J is a continuous function of 4 . We
consider only the case where B is a continuous function of position.
Then J can be discontinuous if the range of integration is a discontinuous
function of position. This can happen through the addition of new mirror
points for the given value of |, as one moves along the auxiliary curve.
It is obvious that the curve of discontinuity must be a spiral and also a
curve of constant J, The existence of such a curve defeats the proof
since, while J is a piecewise monotonic function of position along the
auxiliary curve, it can now in such a way suffer a stepwise change in
value upon each crossing of the curve of discontinuity that, between any
two such consecutive crossings, J varies over the same range as between
any other two. It is not necessarily so that more and more ﬁirror points
are added as the curve of discontinuity is crossed more and more times.
It is obvious that the occurrence df extra mirror points in such a way as to

produce such a curve of discontinuity is not possible when lines of force

with more than a single minimum in B are represented by isolated points in



os B space.

The assumption that<@> ,<é> do not simultaneously vanish means
that through no point on the auxiliary curve passes a line of force
with the property that, on the average, a particle spiralling about
it does not drift off it. Evidently, in order to defeat the proof
there must be a spiral curve of constant J such that every point on
it has this property.

We have shown, then, that the set of curves J = constant being a
family of spirals implies that there is one member of the family at
every point of which J suffers a discontinuity through the introduction
of a new mirror point, or both <&>.and <é> vanish so that no drifting
occurs, or, B = 0. We have not shown that any of these conditions

permits the occurrence of a family of spirals.

Conclusion

While the situation is not as clear cut as one could wish, it
seems unlikely that any reasonable model of the earth's field possesses
any of the properties which permit the set of curves J = constant to be
a family of spirals. Whether any astrophysically interesting fields of
this sort can be constructed is uncertain. If any such model is
attempted, one must still discover whether the magnetic field property
which breaks down the present theorem produces a spiral family of

curves J = constant.
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